










stress (for example, replication fork stalling), and a cascade of
phosphorylation events ultimately leads to cell cycle arrest, the
inhibition of late firing origins, and the expression of check-
point response genes such as RNR (1). As replication forks stall,
increased amounts of single-stranded DNA are exposed and
coated rapidly by the single-stranded DNA-binding protein
replication protein A. This can be visualized by assessing the
focus formation of the large subunit of RPA, Rfa1-YFP. Inter-
estingly, the percentage of cells with one or more Rfa1 foci
increases significantly in a HU-treated ubp7� strain (Fig. 3, a
and b, p � 0.005). This indicates that there is an increased
amount of single-stranded DNA in an ubp7-null cell upon HU-
induced replication fork stalling and suggests that UBP7 may be
involved in properly stalling and/or stabilizing the replication
fork.

To determine whether deletion of UBP7 alters recovery from
HU-induced replication fork stalling, we performed flow
cytometry of wild-type and ubp7 cultures synchronized in G1
phase and treated with 200 mM HU (Fig. 3c). Consistent with
the hypothesis from our microscopic analysis, upon release
from HU treatment, ubp7 mutants exhibited a delay in S phase
progression, evident at the 20- and 30-min time points (Fig. 3c).

We next tested whether the S phase delay in HU-treated
ubp7� cells is due to altered replication fork dynamics and,
therefore, analyzed replication fork fidelity by two-dimensional
gel electrophoresis (Fig. 3d). After HU treatment, we observed a

modest but reproducible increase in bubbles in ubp7� cells,
most evident after 2 h (Fig. 3d, arrowhead). This indicates
slower fork progression and, possibly, an increased amount of
single-stranded DNA upon HU treatment, which is consistent
with the increase in Rfa1 foci we observed in ubp7� (Fig. 3, a
and b). These results suggest that Ubp7 affects replication fork
dynamics and cell cycle progression after HU-induced replica-
tion fork stalling.

Epistasis Analysis of UBP7 with Intra-S Phase Checkpoint
Genes—Because we found that deletion of UBP7 affects S phase
progression upon HU treatment, we next wanted to determine
whether Ubp7 may itself be a checkpoint component. Because
we found that ubp7-null cells do not exhibit synthetic pheno-
types with a deletion mutant of RAD53 or the rad53-K227A
checkpoint activation-deficient mutant on HU (data not
shown), we tested the genetic interaction with further check-
point components. In budding yeast, replication fork stalling
and DNA damage (such as ionizing radiation, ultraviolet radi-
ation, and MMS) invoke distinct cellular responses that, how-
ever, have several common components (32), such as the acti-
vation of Mec1, Rad53, and Dun1 (Fig. 4a). Therefore, to
differentiate which part of the checkpoint pathway Ubp7
affects, we determined the phenotype of double mutants of
ubp7� with rad17�, mrc1�, and rad9� (Fig. 4b). Using this
analysis, we observe a modest synthetic growth defect only for
the ubp7� mrc1� double mutant on HU (Fig. 4b). The pheno-
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FIGURE 3. S phase progression is altered in ubp7 cells. a, live-cell microscopy of wild-type and ubp7� Rfa1-YFP cells left untreated or after 2 h with 100 mM

HU. A representative z plane of differential interference contrast (DIC)/YFP for each strain is shown. Arrowheads mark Rfa1 foci. b, quantification of a. The graph
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HU) � 1059). The indicated p values were calculated by Fischer’s exact test. n.s., not significant. c, FACS analysis of WT and ubp7� cells in log phase (log), after
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accumulating in ubp7� cells.
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types of ubp7� rad17� and ubp7� rad9� on HU reflect the
sensitivity of the ubp7 single mutant and, therefore, do not indi-
cate a synthetic genetic interaction. Mrc1 (Claspin) is required
for unperturbed replication and checkpoint signaling (50, 51).
Therefore, one possibility is that Mrc1 is required for replica-
tion fork stabilization in the absence of UBP7. This require-
ment is consistent with the severe growth defect we observed
for ubp7� sgs1� (Fig. 2e), and we believe that this also reflects a
requirement of the function of Sgs1 in stabilizing the replica-
tion fork and not its canonical HR role.

To determine whether Ubp7 directly affects checkpoint acti-
vation at the step of Mrc1, we next analyzed Mrc1 protein levels
and phosphorylation status in wild-type and ubp7� strains. In
untreated cells, Mrc1 couples the replicative helicase and poly-
merase, whereas it forms a pausing complex with Tof1 to sta-
bilize Pol2 upon replication fork stalling. In the latter scenario,
Mrc1 is hyperphosphorylated by Mec1. When cultures are
treated with HU, Mrc1 phosphorylation is induced in both

wild-type and ubp7� cells (Fig. 4c), indicating that this stage of
intra-S phase checkpoint signaling is functional in ubp7� cells.
We therefore conclude that the intra-S phase checkpoint is
functional upon UBP7 deletion and that UBP7 likely functions
in a similar pathway.

UBP7 Deletion Alters Histone Modifications—Chromatin
remodeling, including the ubiquitination of histone H2B at
lysine 123, is involved in intra-S phase checkpoint signaling (52,
53). Interestingly, in our initial ERC analysis, we found a highly
significant correlation of Ubp7 with histone modification pro-
teins (p � 0.0007861, Wilcoxon rank-sum test, Fig. 5a). There-
fore, we hypothesized that Ubp7 could potentially affect the
modification of a histone or histone-associated factor during
replication. To test this, we first analyzed the genetic interac-
tions of ubp7� with deletion mutants of the histone chaperone
ASF1 and of the E2 enzyme for H2B, RAD6. Neither double
mutant exhibited a synthetic growth defect on HU (Fig. 5b and
supplemental Fig. S3). Given our finding that Ubp7 is important
for an unperturbed S phase upon HU treatment, this could
imply that Ubp7 functions in the same epistasis group as ASF1
and RAD6, factors that are also required for this pathway.

If Ubp7 acts on histones or histone-associated factors, then
its localization should be chromatin-associated. However, to
date, Ubp7 has only been found to function in endocytosis and
to localize close to the cell wall (10). Therefore, we wanted to
ensure that a fraction of Ubp7 is indeed able to access chroma-
tin. A fluorescent fusion of Ubp7 was extremely difficult to
detect using fluorescent microscopy and live-cell imaging (data
not shown), which is likely due to the very low expression level
of Ubp7 (54). To nonetheless show that Ubp7 is chromatin-
associated, we performed chromatin-binding assays using a
strain expressing C-terminally 3HA-tagged Ubp7 from its
endogenous locus. Indeed, we could clearly detect Ubp7 (Fig.
5c) in the chromatin fraction marked by histone H2B. In addi-
tion, although we observed a slight increase in overall Ubp7
protein levels upon nocodazole treatment, the chromatin asso-
ciation of Ubp7 was not dependent on the cell cycle stage or HU
treatment (Fig. 5c). This further supports our hypothesis that
Ubp7 may be acting on a histone or histone-associated factor.

Given the specific sensitivity of ubp7� cells to the replication
fork stalling agent HU and the epistasis with rad6� and asf1�
(Fig. 5b), one possible substrate of Ubp7 during replication
could be histone H2B lysine 123 monoubiquitination. Although
other DUBs have been shown to remove this modification dur-
ing transcription (Ubp8 (55)) and telomere silencing (Ubp6 (56)
and Ubp10 (57–59)), replication or replicative damage may
trigger alternative pathways. Consistent with this hypothesis,
we found that the double mutant of ubp7� and htb-K123R does
not exhibit a synergistic defect on HU (Fig. 5d).

To further test this possibility, we used modification-specific
antibodies and quantified H2B ubiquitination in asynchronous
untreated wild-type and ubp7� cultures (Fig. 5, e and f). In line
with our hypothesis, we did observe a reproducible 1.3-fold
increase in H2B ubiquitination in the ubp7� mutant (Fig. 5, e
and f). Because replication fork stalling and checkpoint activa-
tion lead to an increase in H2B ubiquitination, the observed
increased H2B-Ub levels in ubp7� could result from at least
two things. First, H2B-Ub could be a direct Ubp7 substrate, or,
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second, UBP7 deletion could indirectly lead to increased H2B
ubiquitination as a result of checkpoint activation and/or rep-
licative stress. Given our genetic analysis and the chromatin
association of Ubp7, we favor the possibility of a chromatin-
associated substrate of Ubp7, which could be H2B (Fig. 6).

Discussion

In this study, we provide the first extensive characterization
of the deubiquitinase Ubp7 in the context of the DNA damage
response and propose Ubp7 as a novel factor important for S
phase progression following replication fork stalling by HU.
Although Ubp7 has been shown previously to act during endo-
cytosis (10, 11), we provide several lines of evidence that Ubp7 is
also needed during recovery from replication stress. UBP7 dele-
tion specifically sensitizes cells to the DNA-damaging agents
cisplatin and HU, and mutant cells exhibit characteristics of an
activated intra-S phase checkpoint and recover from HU treat-
ment more slowly than wild-type cells. This is in line with our
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finding that replication fork-stabilizing factors such as Sgs1 are
required for HU tolerance in the absence of UBP7. Therefore,
we propose a model in which Ubp7 acts to ensure replication
fidelity, possibly by controlling the chromatin state around the
replication fork.

In an unperturbed cell, the replication fork is coupled to the
replicative helicase Mcm, thereby ensuring that only limited
stretches of DNA in front of the replication fork are unwound
(Fig. 6, top panel). One of the factors that ensures this associa-
tion and also acts as a checkpoint component is Mrc1 (Claspin
in mammals) (50, 51, 60). Among other factors, such as Mus81
(49), Sgs1 (BLM) is recruited to the stalled replication fork, and
this process is required for fork stability and to enable fork
restart (46 – 48). Sgs1 and Mrc1 function in the same genetic
pathway to mediate Rad53 activation upon replication fork
stalling by HU treatment, and, importantly, this role of Sgs1 is
Rad51-independent (46). We find that ubp7� exhibits negative
synthetic interactions with deletions of MRC1, SGS1, and
MUS81 (Figs. 2, e and f, and 4b), all components required for
replication fork stability. Therefore, we hypothesize that, upon
deletion of UBP7, there is a requirement for factors involved in
the stabilization of stalled replication forks. Further supporting
this hypothesis is our finding that an ubp7� rad51� mutant
does not exhibit a synthetic phenotype (Fig. 2e), whereas sgs1�
ubp7� does. This indicates that the function of Sgs1 that is
required upon HU treatment in a ubp7-null background is
Rad51-independent and, therefore, likely attributed to the role
of Sgs1 in maintaining replication fork stability (46). This,
together with the finding that ubp7 mutants do not display
altered rates of recombination or mutation frequencies (Fig. 2, c
and d), argues that Ubp7 is not involved in canonical HR but,
rather, functions in parallel to Sgs1 and Mus81 to stabilize
stalled replication forks. The conclusions drawn from this
genetic analysis are further supported by the fact that we
observed a significant increase in Rfa1 foci (Fig. 3, a and b) and
replication bubbles (Fig. 3d) upon HU treatment, indicating an
increase in single-stranded DNA upon replication fork stalling
in ubp7�.

An additional factor important for replication fork stability is
the histone chaperone Asf1, which also possibly acts to prevent
uncoupling of Mcm proteins from stalled forks (61). In contrast
to the genetic interactions discussed above for mrc1 and sgs1,
we did not observe a synthetic phenotype of ubp7� with a dele-
tion of ASF1 even though it is similarly important for replica-
tion fork stability (61). Because we provided several lines of
evidence showing that Ubp7 plays a role in ensuring S phase
progression upon HU-exposure, we conclude that Asf1 likely
functions in the same genetic pathway as Ubp7 to ensure rep-
lication fork stability.

Ubp7 is a deubiquinating enzyme that removes ubiquitin
from substrate protein lysine residues (9). There are several
potential substrates for Ubp7 in the context of replication and
the response to replicative stress because many factors involved
in the DDR are known to be modified posttranslationally with
ubiquitin (3). In budding yeast, H2B is ubiquitinated predomi-
nantly at lysine 123 by Rad6, Bre1, and Lge1 (62– 64), and there
are several reports that demonstrate a function of H2B ubiquiti-
nation in DNA repair (52). In the context of replication fork

stalling, H2B ubiquitination has been proposed to enable the
retention of Sgs1 at a stalled fork and to enhance Rad53 phos-
phorylation (53). Both an htb-K123R strain and sgs1� exhibit
reduced replication fork stability in HU (53). Because we only
observe a severe synthetic phenotype of ubp7� with sgs1� and
not htb-K123R (Figs. 2e and 5d), we hypothesize that Ubp7 may
act in the same genetic pathway as H2B, which, in turn, acts in
parallel to Sgs1 to ensure replication fork stability. This is con-
sistent with an Sgs1-independent role of H2B in Rad53 phos-
phorylation and checkpoint activation that has been published
previously (53) and that, in turn, raises the possibility that
monoubiquitinated H2B could be an Ubp7 substrate. We
attempted to directly address this option and used FLAG-H2B
and Ubp7–3HA purified from yeast for in vitro deubiquitina-
tion assays. Unfortunately, because of the low expression level
of endogenous Ubp7, the yield of active enzyme was too low to
reliably detect a significant change in H2B ubiquitination. Fur-
ther experiments, possibly with recombinant Ubp7, will be
required to answer this question.

A better understanding of the cellular mechanisms that reg-
ulate replication and, thereby, ensure genetic fidelity (39) is of
crucial importance to human health. Genome instability is con-
sidered a hallmark of cancer (2), and, although the importance
of coordinated ubiquitination for DNA repair has been well
studied, the role of DUBs has only shifted into focus recently
(65). Intriguingly, there have also been reports that H2B ubiq-
uitination is associated with cancer (66) and that ubiquitin
pathways, including DUBs, are potential therapeutic targets for
human diseases, including cancer (67). Future studies are
needed to identify a functional orthologue of Ubp7 in mammals
and to determine whether its role in S phase progression is
conserved from yeast to humans.
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